Modeling disease progression and rosiglitazone intervention in type 2 diabetic Goto-Kakizaki rats.
نویسندگان
چکیده
The pharmacokinetics (PK) and pharmacodynamics (PD) of rosiglitazone were studied in type 2 diabetic (T2D) Goto-Kakizaki (GK) rats that received daily doses of 0, 5, or 10 mg/kg for 23 days followed by 60 days of washout. Blood glucose, plasma insulin, and hemoglobin A1c were determined over time. Oral glucose tolerance tests were performed before and at the end of treatment and after 20 days of washout to determine insulin sensitivity and β-cell function. Rosiglitazone effectively lowered glucose by inhibiting hepatic glucose production and enhancing insulin sensitivity. The glucose-insulin inter-regulation was characterized by a feedback model: glucose and insulin have their own production (k(in)) and elimination (k(out)) rate constants, whereas glucose stimulates insulin production (k(inI)) and insulin, in turn, promotes glucose utilization (k(outG)). Animal handling and placebo treatment affected glucose turnover with k(pl) = 0.388 kg/mg/day. The PK of rosiglitazone was fitted with a one-compartment model with first-order absorption. The effect of rosiglitazone was described as inhibition of k(inG) with I(max) = 0.296 and IC(50) = 1.97 μg/ml. Rosiglitazone also stimulated glucose utilization by improving insulin sensitivity with a linear factor S(R) = 0.0796 kg/mg. In GK rats, 23 days of treatment increased body weight but did not cause hemodilution. Weight gain was characterized with body weight input (k(s)(w)) and output (k(d)(w)), and rosiglitazone inhibited k(d)(w) with ID(50) = 96.8 mg/kg. The mechanistic PK/PD model quantitatively described the glucose-insulin system and body weights under chronic rosiglitazone treatment in T2D rats.
منابع مشابه
Long-term renal changes in the Goto-Kakizaki rat, a model of lean type 2 diabetes.
BACKGROUND Type 2 diabetes has become the single most frequent cause of end-stage renal disease. The Goto-Kakizaki rat is currently used as a model for lean type 2 diabetes, but its renal changes have not been fully characterized. We investigated long-term functional and structural renal changes in the Goto-Kakizaki rat to evaluate if this animal model resembles the changes observed in human di...
متن کاملRice protein ameliorates the progression of diabetic nephropathy in Goto-Kakizaki rats with high-sucrose feeding.
The effect of rice protein (RP) on diabetic nephropathy in non-obese, spontaneous type 2 diabetic Goto-Kakizaki (GK) rats was investigated.GK rats at 7 weeks of age were fed 20% RP or casein (C) in standard or high-sucrose diets for 10 weeks. Plasma total cholesterol,TAG, alkaline phosphatase (ALP), adiponectin, creatinine and urinary albumin excretion (UAE) were measured and renal histology wa...
متن کاملDistinct genetic regulation of progression of diabetes and renal disease in the Goto-Kakizaki rat.
Goto-Kakizaki (GK) rats develop early-onset type 2 diabetes (T2D) symptoms, with signs of diabetic nephropathy becoming apparent with aging. To determine whether T2D and renal disease share similar genetic architecture, we ran a quantitative trait locus (QTL) analysis in the F2 progeny of a GK x Brown Norway (BN) rat cross. Further, to determine whether genetic components change over time, we r...
متن کاملThe Novel Oral Drug Subetta Exerts an Antidiabetic Effect in the Diabetic Goto-Kakizaki Rat: Comparison with Rosiglitazone
The aim of the present study was to evaluate the potential antidiabetic effects of two-component drug Subetta and its components (release-active dilutions of antibodies to β -subunit insulin receptor (RAD of Abs to β -InsR) and to endothelial nitric oxide synthase (RAD of Abs to eNOS)) in Goto-Kakizaki (Paris colony) (GK/Par) diabetic rats. Subetta was administered orally for 28 days once daily...
متن کاملHyperbaric exposure with high oxygen concentration improves altered fiber types in the plantaris muscle of diabetic Goto-Kakizaki rats.
Hyperbaric exposure with high oxygen concentration inhibits a growth-related increase in the glucose and insulin of diabetic rats. In this study, 5-week-old diabetic Goto-Kakizaki rats were exposed to a hyperbaric environment (1.25 atmospheric pressure) with a high oxygen concentration (36%) for 6 h daily. Fiber type distributions and oxidative enzyme activities in the fast-twitch plantaris mus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 341 3 شماره
صفحات -
تاریخ انتشار 2012